Evaluations of Some Determinants of Matrices Related to the Pascal Triangle
نویسندگان
چکیده
We prove several evaluations of determinants of matrices, the entries of which are given by the recurrence ai,j = ai−1,j + ai,j−1, or variations thereof. These evaluations were either conjectured or extend conjectures by Roland Bacher [J. Théorie Nombres Bordeaux 14 (2002), to appear].
منابع مشابه
Matrices Related to the Pascal Triangle
for 0 ≤ i, j ∈ N. The matrix P is hence the famous Pascal triangle yielding the binomial coefficients and can be recursively constructed by the rules p0,i = pi,0 = 1 for i ≥ 0 and pi,j = pi−1,j + pi,j−1 for 1 ≤ i, j. In this paper we are interested in (sequences of determinants of finite) matrices related to P . The present section deals with some minors (determinants of submatrices) of the abo...
متن کاملEla New Families of Integer Matrices Whose Leading Principal Minors Form Some Well-known Sequences∗
The purpose of this article is to obtain some new infinite families of Toeplitz matrices, 7-matrices and generalized Pascal triangles whose leading principal minors form the Fibonacci, Lucas, Pell and Jacobsthal sequences. We also present a new proof for Theorem 3.1 in [R. Bacher. Determinants of matrices related to the Pascal triangle. J. Théor. Nombres Bordeaux, 14:19–41, 2002.].
متن کامل1 Matrices related to the Pascal triangle
for 0 ≤ i, j ∈ N. The matrix P is hence the famous Pascal triangle yielding the binomial coefficients and can be recursively constructed by the rules p0,i = pi,0 = 1 for i ≥ 0 and pi,j = pi−1,j + pi,j−1 for 1 ≤ i, j. In this paper we are interested in (sequences of determinants of finite) matrices related to P . The present section deals with determinants of some minors of the above Pascal tria...
متن کاملGeneralized Pascal triangles and Toeplitz matrices
The purpose of this article is to study determinants of matrices which are known as generalized Pascal triangles (see R. Bacher. Determinants of matrices related to the Pascal triangle. J. Théor. Nombres Bordeaux, 14:19–41, 2002). This article presents a factorization by expressing such a matrix as a product of a unipotent lower triangular matrix, a Toeplitz matrix, and a unipotent upper triang...
متن کاملDeterminants Related to Dirichlet Characters Modulo 2, 4 and 8 of binomial Coefficients and the Algebra of Recurrence Matrices
Using recurrence matrices, defined and described with some details, we study a few determinants related to evaluations of binomial coefficients on Dirichlet characters modulo 2, 4 and 8. 1
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002